A4 What Makes Pipelining Hard to Implement? A-45

When an instruction enters WB (or is about to leave MEM), the exception sta-
tus vector is checked. If any exceptions are posted, they are handled in the order in
which they would occur in time on an unpipelined processor-—the exception corre-
sponding to the earliest instruction (and usually the earliest pipe stage for that
instruction) is handled first. This guarantees that all exceptions will be seen on
instruction i before any are seen on 7 + 1. Of course, any action taken in earlier pipe
stages on behalf of instruction i may be invalid, but since writes to the register file
and memory were disabled, no state could have been changed. As we will see in
Section A.5, maintaining this precise model for FP operations is much harder.

In the next subsection we describe problems that arise in implementing
exceptions in the pipelines of processors with more powerful, longer-running
instructions.

Instruction Set Complications

No MIPS instruction has more than one result, and our MIPS pipeline writes that
result only at the end of an instruction’s execution. When an instruction is guar-
anteed to complete, it is called commitred. In the MIPS integer pipeline, all
instructions are committed when they reach the end of the MEM stage (or begin-
ning of WB) and no instruction updates the state before that stage. Thus, precise
exceptions are straightforward. Some processors have instructions that change
the state in the middle of the instruction execution, before the instruction and its
predecessors are guaranteed to complete. For example, autoincrement addressing
modes in the TA-32 architecture cause the update of registers in the middle of an
instruction execution. In such a case, if the instruction is aborted because of an
exception, it will leave the processor state altered. Although we know which
instruction caused the exception, without additional hardware support the excep-
tion will be imprecise because the instruction will be half finished. Restarting the
instruction stream after such an imprecise exception is difficult. Alternatively, we
could avoid updating the state before the instruction commits, but this may be
difficult or costly. since there may be dependences on the updated state: Consider
a VAX instruction that autoincrements the same register multiple times. Thus, to
maintain a precise exception model, most processors with such instructions have
the ability to back out any state changes made before the instruction is commit-
ted. If an exception occurs, the processor uses this ability to reset the state of the
processor to its value before the interrupted instruction started. In the next sec-
tion. we will see that a more powerful MIPS floating-point pipeline can introduce
similar problems, and Section A.7 introduces techniques that substantially com-
plicate exception handling.

A related source of difficulties arises from instructions that update memory
state during execution, such as the string copy operations on the VAX or IBM 360
(see Appendix J). To make it possible to interrupt and restart these instructions,
the instructions are defined to use the general-purpose registers as working regis-
ters. Thus the state of the partially completed instruction is always in the regis-
ters, which are saved on an exception and restored after the exception, allowing

A-46 Appendix A Pipelining: Basic and Intermediate Concepts

the instruction to continue. In the VAX an additional bit of state records when an
instruction has started updating the memory state, so that when the pipeline is
restarted, the CPU knows whether to restart the instruction from the beginning or
from the middle of the instruction. The IA-32 string instructions also use the reg-
isters as working storage, so that saving and restoring the registers saves and
restores the state of such instructions.

A different set of difficulties arises from odd bits of state that may create
additional pipeline hazards or may require extra hardware to save and restore.
Condition codes are a good example of this. Many processors set the condition
codes implicitly as part of the instruction. This approach has advantages, since
condition codes decouple the evaluation of the condition from the actual branch.
However, implicitly set condition codes can cause difficulties in scheduling any
pipeline delays between setting the condition code and the branch, since most
instructions set the condition code and cannot be used in the delay slots between
the condition evaluation and the branch.

Additionally, in processors with condition codes, the processor must decide
when the branch condition is fixed. This involves finding out when the condition
code has been set for the last time before the branch. In most processors with
implicitly set condition codes, this is done by delaying the branch condition eval-
uation until all previous instructions have had a chance to set the condition code.

Of course, architectures with explicitly set condition codes allow the delay
between condition test and the branch to be scheduled; however, pipeline control
must still track the last instruction that sets the condition code to know when the
branch condition is decided. In effect. the condition code must be treated as an
operand that requires hazard detection for RAW hazards with branches, just as
MIPS must do on the registers.

A final thorny area in pipelining is multicycle operations. Imagine trying to
pipeline a sequence of VAX instructions such as this:

MOVL R1,R2 ;moves between registers
ADDL3 42(R1),56(R1)+,@(R1) ;adds memory locations
SUBL2 R2,R3 ;subtracts registers

MOVC3 @(R1) [R2],74(R2),R3 smoves a character string

These instructions differ radically in the number of clock cycles they will require,
from as low as one up to hundreds of clock cycles. They also require different
numbers of data memory accesses, from zero to possibly hundreds. The data haz-
ards are very complex and occur both between and within instructions. The sim-
ple solution of making all instructions execute for the same number of clock
cycles is unacceptable because it introduces an enormous number of hazards and
bypass conditions and makes an immensely long pipeline. Pipelining the VAX at
the instruction level is difficult, but a clever solution was tound by the VAX 8800
designers. They pipeline the microinstruction execution: a microinstruction is a
simple instruction used in sequences to implement a more complex instruction
set. Because the microinstructions are simple (they look a lot like MIPS), the
pipeline control is much easier. Since 1995, all Intel IA-32 microprocessors have

A5

A.5 Extending the MIPS Pipeline to Handle Multicycle Operations A-47

used this strategy of converting the IA-32 instructions into microoperations, and
then pipelining the microoperations.

In comparison, load-store processors have simple operations with similar
amounts of work and pipeline more easily. If architects realize the relationship
between instruction set design and pipelining, they can design architectures for
more efficient pipelining. In the next section we will see how the MIPS pipeline
deals with long-running instructions, specifically floating-point operations.

For many years the interaction between instruction sets and implementations
was believed to be small, and implementation issues were not a major focus in
designing instruction sets. In the 1980s it became clear that the difficulty and
inefficiency of pipelining could both be increased by instruction set complica-
tions. In the 1990s, all companies moved to simpler instructions sets with the
goal of reducing the complexity of aggressive implementations.

Extending the MIPS Pipeline to Handle Multicycle
Operations

We now want to explore how our MIPS pipeline can be extended to handle
floating-point operations. This section concentrates on the basic approach and the
design alternatives, closing with some performance measurements of a MIPS
floating-point pipeline.

It is impractical to require that all MIPS floating-point operations complete in
I clock cycle, or even in 2. Doing so would mean accepting a slow clock, or
using enormous amounts of logic in the floating-point units, or both. Instead, the
floating-point pipeline will allow for a longer latency for operations. This is eas-
ier to grasp if we imagine the floating-point instructions as having the same pipe-
line as the integer instructions, with two important changes. First, the EX cycle
may be repeated as many times as needed to complete the operation—the number
of repetitions can vary for different operations. Second, there may be multiple
floating-point functional units. A stall will occur if the instruction to be issued
will either cause a structural hazard for the functional unit it uses or cause a data
hazard.

For this section, let’s assume that there are four separate functional units in
our MIPS implementation:

1. The main integer unit that handles loads and stores, integer ALU operations,
and branches

2. FP and integer multiplier
FP adder that handles FP add, subtract, and conversion

4, FP and integer divider

If we also assume that the execution stages of these functional units are not pipe-
lined, then Figure A.29 shows the resulting pipeline structure. Because EX is not

A-48

Appendix A Pipelining: Basic and Intermediate Concepts

pipelined. no other instruction using that functional unit may issue until the pre-
vious instruction leaves EX. Moreover, if an instruction cannot proceed to the EX
stage, the entire pipeline behind that instruction will be stalled.

In reality, the intermediate results are probably not cycled around the EX unit
as Figure A.29 suggests; instead, the EX pipeline stage has some number of
clock delays larger than 1. We can generalize the structure of the FP pipeline
shown in Figure A.29 to allow pipelining of some stages and multiple ongoing
operations. To describe such a pipeline, we must define both the latency of the
functional units and also the initiation interval or repeat interval. We define
latency the same way we defined it earlier: the number of intervening cycles
between an instruction that produces a result and an instruction that uses the
result. The initiation or repeat interval is the number of cycles that must elapse
between issuing two operations of a given type. For example, we will use the
latencies and initiation intervals shown in Figure A.30.

With this definition of latency, integer ALU operations have a latency of 0.
since the results can be used on the next clock cycle, and loads have a latency of
I. since their results can be used after one intervening cycle. Since most opera-
tions consume their operands at the beginning of EX, the latency is usually the
number of stages after EX that an instruction produces a result—for example,
zero stages for ALU operations and one stage for loads. The primary exception is
stores, which consume the value being stored 1 cycle later. Hence the latency to a
store for the value being stored, but not for the base address register. will be

EX

/ FP/integer

multiply

EX

FP/integer
divider

Figure A.29 The MIPS pipeline with three additional unpipelined, floating-point,
functional units. Because only one instruction issues on every clock cycle, all instruc-
tions go through the standard pipeline for integer operations. The floating-point opera-
tions simply loop when they reach the EX stage. After they have finished the EX stage,
they proceed to MEM and WB to complete execution.

A.5 Extending the MIPS Pipeline to Handle Multicycle Operations A-49

Functional unit Latency Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1
FP add 3]
FP multiply (also integer multiply) 6 I
FP divide (also integer divide) 24 25

Figure A.30 Latencies and initiation intervals for functional units.

1 cycle less. Pipeline latency is essentially equal to 1 cycle less than the depth of
the execution pipeline, which is the number of stages from the EX stage to the
stage that produces the result. Thus, for the example pipeline just above, the num-
ber of stages in an FP add is four, while the number of stages in an FP multiply is
seven. To achieve a higher clock rate, designers need to put fewer logic levels in
each pipe stage, which makes the number of pipe stages required for more com-
plex operations larger. The penalty for the faster clock rate is thus longer latency
for operations.

The example pipeline structure in Figure A.30 allows up to four outstanding
FP adds, seven outstanding FP/integer multiplies, and one FP divide. Figure A.31
shows how this pipeline can be drawn by extending Figure A.29. The repeat
interval is implemented in Figure A.31 by adding additional pipeline stages,
which will be separated by additional pipeline registers. Because the units are
independent, we name the stages differently. The pipeline stages that take multi-
ple clock cycles, such as the divide unit, are further subdivided to show the
latency of those stages. Because they are not complete stages, only one operation
may be active. The pipeline structure can also be shown using the familiar dia-
grams from earlier in the appendix, as Figure A.32 shows for a set of independent
FP operations and FP loads and stores. Naturally. the longer latency of the FP
operations increases the frequency of RAW hazards and resultant stalls, as we will
see later in this section.

The structure of the pipeline in Figure A.31 requires the introduction of the
additional pipeline registers (e.g., A1/A2, A2/A3, A3/A4) and the modification of
the connections to those registers. The ID/EX register must be expanded to con-
nect ID to EX. DIV, M1, and Al; we can refer to the portion of the register asso-
ciated with one of the next stages with the notation ID/EX, ID/DIV, ID/M1, or
ID/A1. The pipeline register between ID and all the other stages may be thought
of as logically separate registers and may, in fact, be implemented as separate
registers. Because only one operation can be in a pipe stage at a time, the control
information can be associated with the register at the head of the stage.

Hazards and Forwarding in Longer Latency Pipelines

There are a number of different aspects to the hazard detection and forwarding
for a pipeline like that in Figure A.31.

A-50 Appendix A Pipelining: Basic and Intermediate Concepts

Integer unit

EX

FP/integer multiply

M4 M5

Figure A.31 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully
pipelined and have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires 24
clock cycles to complete. The latency in instructions between the issue of an FP operation and the use of the result of
that operation without incurring a RAW stall is determined by the number of cycles spent in the execution stages. For
example, the fourth instruction after an FP add can use the result of the FP add. For integer ALU operations, the
depth of the execution pipeline is always one and the next instruction can use the results.

MUL.D IF ID Mi M2 M3 M4 M5 Mé M7 MEM WB
ADD.D IF ID Al A2 A3 A4 MEM WB

L.D IF ID EX MEM WB

S.D IF ID EX MEM WB

Figure A.32 The pipeline timing of a set of independent FP operations.The stages in italics show where data are
needed, while the stages in bold show where a result is available. The “. D" extension on the instruction mnemonic
indicates double-precision (64-bit) floating-point operations. FP loads and stores use a 64-bit path to memory so that
the pipelining timing is just like an integer load or store.

1.

Because the divide unit is not fully pipelined, structural hazards can occur.
These will need to be detected and issuing instructions will need to be stalled.

Because the instructions have varying running times, the number of register
writes required in a cycle can be larger than 1.

WAW hazards are possible, since instructions no longer reach WB in order.
Note that WAR hazards are not possible, since the register reads always occur
in ID.

A5

Extending the MIPS Pipeline to Handle Multicycle Operations

A-51

4. Instructions can complete in a difterent order than they were issued, causing
problems with exceptions; we deal with this in the next subsection.

5. Because of longer latency of operations, stalls for RAW hazards will be more

frequent.

The increase in stalls arising from longer operation latencies is fundamentally the
same as that for the integer pipeline. Before describing the new problems that
arise in this FP pipeline and looking at solutions. let’s examine the potential
impact of RAW hazards. Figure A.33 shows a typical FP code sequence and the
resultant stalls. At the end of this section, we’ll examine the performance of this
FP pipeline for our SPEC subset.

Now look at the problems arising from writes, described as (2) and (3) in the
earlier list. If we assume the FP register file has one write port, sequences of FP
operations, as well as an FP load together with FP operations, can cause conflicts
for the register write port. Consider the pipeline sequence shown in Figure A.34. In

Clock cycle number

Instruction 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
L.D F4,0(R2) IF ID EX MEM WB

MUL.D FO,F4,F6 [F ID stall M1 M2 M3 M4 MS M6 M7 MEM WB

ADD.D F2,F0,F8 IF stall ID stall stall stall stall stall stall Al A2 A3 A4 MEM WB
S.0 F2,0(R2) IF stall stall stall stall stall stall ID EX stall stall stal MEM

Figure A.33 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is
dependent on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypass-
ing and forwarding. The S.D must be stalled an extra cycle so that its MEM does not conflict with the ADD.D. Extra
hardware could easily handle this case.

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11
MUL.D FO,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
IF ID EX MEM WB
IF ID EX MEM WB
ADD.D F2,F4,F6 IF ID Al A2 A3 A4 MEM WB
IF ID EX MEM WB
IF D EX MEM WB
L.D F2,0(R2) IF ID EX MEM WB

Figure A.34 Three instructions want to perform a write back to the FP register file simultaneously, as shown in
clock cycle 11.This is not the worst case, since an earlier divide in the FP unit could also finish on the same clock.
Note that although the MUL.D,ADD.D,and L.D all are in the MEM stage in clock cycle 10, only the L.D actually uses the
memory, so no structural hazard exists for MEM.

A-52

Appendix A Pipelining: Basic and Intermediate Concepts

clock cycle 11, all three instructions will reach WB and want to write the register
file. With only a single register file write port, the processor must serialize the
instruction completion. This single register port represents a structural hazard. We
could increase the number of write ports to solve this, but that solution may be
unattractive since the additional write ports would be used only rarely. This is
because the maximum steady-state number of write ports needed is 1. Instead, we
choose to detect and enforce access to the write port as a structural hazard.

There are two different ways to implement this interlock. The first is to track
the use of the write port in the ID stage and to stall an instruction before it issues.
just as we would for any other structural hazard. Tracking the use of the write
port can be done with a shift register that indicates when already-issued instruc-
tions will use the register file. If the instruction in ID needs to use the register file
at the same time as an instruction already issued, the instruction in 1D is stalled
for a cycle. On each clock the reservation register is shifted 1 bit. This implemen-
tation has an advantage: It maintains the property that all interlock detection and
stall insertion occurs in the ID stage. The cost is the addition of the shift register
and write conflict logic. We will assume this scheme throughout this section.

An alternative scheme is to stall a conflicting instruction when it tries to enter
either the MEM or WB stage. If we wait to stall the conflicting instructions until
they want to enter the MEM or WB stage, we can choose to stall either instruc-
tion. A simple, though sometimes suboptimal, heuristic is to give priority to the
unit with the longest latency, since that is the one most likely to have caused
another instruction to be stalled for a RAW hazard. The advantage of this scheme
is that it does not require us to detect the conflict until the entrance of the MEM
or WB stage, where it is easy to see. The disadvantage is that it complicates pipe-
line control. as stalls can now arise from two places. Notice that stalling before
entering MEM will cause the EX, A4, or M7 stage to be occupied, possibly forc-
ing the stall to trickle back in the pipeline. Likewise, stalling before WB would
cause MEM to back up.

Our other problem is the possibility of WAW hazards. To see that these exist.
consider the example in Figure A.34. If the L.D instruction were issued one cycle
earlier and had a destination of F2, then it would create a WAW hazard, because it
would write F2 one cycle earlier than the ADD.D. Note that this hazard only
occurs when the result of the ADD.D is overwritten without any instruction ever
using it! If there were a use of F2 between the ADD.D and the L.D, the pipeline
would need to be stalled for a RAW hazard, and the L.D would not issue until the
ADD.D was completed. We could argue that, for our pipeline, WAW hazards only
occur when a useless instruction is executed, but we must still detect them and
make sure that the result of the L.D appears in F2 when we are done. (As we will
see in Section A.8, such sequences sometimes do occur in reasonable code.)

There are two possible ways to handle this WAW hazard. The first approach is
to delay the issue of the load instruction until the ADD. D enters MEM. The second
approach is to stamp out the result of the ADD.D by detecting the hazard and
changing the control so that the ADD.D does not write its result. Then the L.D can
issue right away. Because this hazard is rare, either scheme will work fine~—you

A.5 Extending the MIPS Pipeline to Handle Multicycle Operations <« A-53

can pick whatever is simpler to implement. In either case, the hazard can be
detected during ID when the L.D is issuing. Then stalling the L.D or making the
ADD.D a no-op is easy. The difficult situation is to detect that the L.D might finish
before the ADD.D, because that requires knowing the length of the pipeline and
the current position of the ADD. D. Luckily, this code sequence (two writes with no
intervening read) will be very rare, so we can use a simple solution: If an instruc-
tion in ID wants to write the same register as an instruction already issued, do not
issue the instruction to EX. In Section A.7, we will see how additional hardware
can eliminate stalls for such hazards. First, let’s put together the pieces for imple-
menting the hazard and issue logic in our FP pipeline.

In detecting the possible hazards, we must consider hazards among FP
instructions, as well as hazards between an FP instruction and an integer instruc-
tion. Except for FP loads-stores and FP-integer register moves, the FP and integer
registers are distinct. All integer instructions operate on the integer registers,
while the floating-point operations operate only on their own registers. Thus, we
need only consider FP loads-stores and FP register moves in detecting hazards
between FP and integer instructions. This simplification of pipeline control is an
additional advantage of having separate register files for integer and floating-
point data. (The main advantages are a doubling of the number of registers, with-
out making either set larger, and an increase in bandwidth without adding more
ports to either set. The main disadvantage, beyond the need for an extra register
file, is the small cost of occasional moves needed between the two register sets.)
Assuming that the pipeline does all hazard detection in ID, there are three checks
that must be performed before an instruction can issue:

1. Check for structural hazards—Wait until the required functional unit is not
busy (this is only needed for divides in this pipeline) and make sure the regis-
ter write port is available when it will be needed.

2. Check for a RAW data hazard—Wait until the source registers are not listed as
pending destinations in a pipeline register that will not be available when this
instruction needs the result. A number of checks must be made here, depending
on both the source instruction, which determines when the result will be avail-
able, and the destination instruction, which determines when the value is
needed. For example, if the instruction in ID is an FP operation with source reg-
ister F2, then F2 cannot be listed as a destination in ID/A1, A1/A2, or A2/A3,
which correspond to FP add instructions that will not be finished when the
instruction in ID needs a result. (ID/A1 is the portion of the output register of
ID that is sent to Al.) Divide is somewhat more tricky, if we want to allow the
last few cycles of a divide to be overlapped, since we need to handle the case
when a divide is close to finishing as special. In practice, designers might
ignore this optimization in favor of a simpler issue test.

3. Check for a WAW data hazard—Determine if any instruction in Al, . . ., A4,
D, M1, . . ., M7 has the same register destination as this instruction. If so,
stall the issue of the instruction in ID.

A-54

Appendix A Pipelining: Basic and Intermediate Concepts

Although the hazard detection is more complex with the multicycle FP opera-
tions, the concepts are the same as for the MIPS integer pipeline. The same is true
for the forwarding logic. The forwarding can be implemented by checking if the
destination register in any of EX/MEM, A4/MEM, M7/MEM, D/MEM, or
MEM/WB registers is one of the source registers of a floating-point instruction.
If so, the appropriate input multiplexer will have to be enabled so as to choose the
forwarded data. In the exercises, you will have the opportunity to specify the
logic for the RAW and WAW hazard detection as well as for forwarding.

Multicycle FP operations also introduce problems for our exception mecha-
nisms, which we deal with next.

Maintaining Precise Exceptions

Another problem caused by these long-running instructions can be illustrated
with the following sequence of code:

DIV.D FO,F2,F4
ADD.D F10,F10,F8
SuB.D F12,F12,F14

This code sequence looks straightforward; there are no dependences. A problem
arises, however, because an instruction issued early may complete after an
instruction issued later. In this example, we can expect ADD.D and SUB.D to com-
plete before the DIV.D completes. This is called out-of-order completion and is
common in pipelines with long-running operations (see Section A.7). Because
hazard detection will prevent any dependence among instructions from being
violated, why is out-of-order completion a problem? Suppose that the SUB.D
causes a floating-point arithmetic exception at a point where the ADD.D has com-
pleted but the DIV.D has not. The result will be an imprecise exception, some-
thing we are trying to avoid. It may appear that this could be handled by letting
the floating-point pipeline drain, as we do for the integer pipeline. But the excep-
tion may be in a position where this is not possible. For example, if the DIV.D
decided to take a floating-point-arithmetic exception after the add completed, we
could not have a precise exception at the hardware level. In fact, because the
ADD.D destroys one of its operands, we could not restore the state to what it was
before the DIV.D, even with software help.

This problem arises because instructions are completing in a different order
than they were issued. There are four possible approaches to dealing with out-of-
order completion. The first is to ignore the problem and settle for imprecise excep-
tions. This approach was used in the 1960s and early 1970s. It is still used in some
supercomputers, where certain classes of exceptions are not allowed or are handled
by the hardware without stopping the pipeline. It is difficult to use this approach in
most processors built today because of features such as virtual memory and the
IEEE floating-point standard, which essentially require precise exceptions through
a combination of hardware and software. As mentioned earlier. some recent proces-
sors have solved this problem by introducing two modes of execution: a fast, but

A.5 Extending the MIPS Pipeline to Handle Multicycle Operations A-55

possibly imprecise mode and a slower, precise mode. The slower precise mode is
implemented either with a mode switch or by insertion of explicit instructions that
test for FP exceptions. In either case the amount of overlap and reordering permit-
ted in the FP pipeline is significantly restricted so that effectively only one FP
instruction is active at a time. This solution is used in the DEC Alpha 21064 and
21164, in the IBM Powerl and Power2, and in the MIPS R8000.

A second approach is to buffer the results of an operation until all the opera-
tions that were issued earlier are complete. Some CPUs actually use this solution,
but it becomes expensive when the difference in running times among operations
is large, since the number of results to buffer can become large. Furthermore,
results from the queue must be bypassed to continue issuing instructions while
waiting for the longer instruction. This requires a large number of comparators
and a very large multiplexer.

There are two viable variations on this basic approach. The first is a history
file, used in the CYBER 180/990. The history file keeps track of the original
values of registers. When an exception occurs and the state must be rolled back
earlier than some instruction that completed out of order, the original value of
the register can be restored from the history file. A similar technique is used for
autoincrement and autodecrement addressing on processors like VAXes.
Another approach, the future file, proposed by Smith and Pleszkun [1988],
keeps the newer value of a register; when all earlier instructions have com-
pleted, the main register file is updated from the future file. On an exception,
the main register file has the precise values for the interrupted state. In Chapter
2. we will see extensions of this idea, which are used in processors such as the
PowerPC 620 and the MIPS R10000 to aliow overlap and reordering while pre-
serving precise exceptions.

A third technique in use is to allow the exceptions to become somewhat
imprecise, but to keep enough information so that the trap-handling routines can
create a precise sequence for the exception. This means knowing what operations
were in the pipeline and their PCs. Then, after handling the exception, the soft-
ware finishes any instructions that precede the latest instruction completed, and
the sequence can restart. Consider the following worst-case code sequence:

Instruction;—A long-running instruction that eventually interrupts execution.

Instructiony, . . . , Instruction,_;—A series of instructions that are not
completed.

Instruction,—An instruction that is finished.

Given the PCs of all the instructions in the pipeline and the exception return PC,
the software can find the state of instruction; and instruction,. Because instruc-
tion,, has completed, we will want to restart execution at instruction,|. After
handling the exception, the software must simulate the execution of instruction;,
..., instruction,,_;. Then we can return from the exception and restart at instruc-
tion,,,.1. The complexity of executing these instructions properly by the handler is
the major difficulty of this scheme.

A-56

Appendix A Pipelining: Basic and Intermediate Concepts

A.6

There is an important simplification for simple MIPS-like pipelines: If
instructiony, . . ., instruction,, are all integer instructions, then we know that if
instruction, has completed, all of instruction,, . . ., instruction,,_; have also com-
pleted. Thus, only floating-point operations need to be handled. To make this
scheme tractable, the number of floating-point instructions that can be over-
lapped in execution can be limited. For example, if we only overlap two instruc-
tions, then only the interrupting instruction need be completed by software. This
restriction may reduce the potential throughput if the FP pipelines are deep or if
there are a significant number of FP functional units. This approach is used in the
SPARC architecture to allow overlap of floating-point and integer operations.

The final technique is a hybrid scheme that allows the instruction issue to
continue only if it is certain that all the instructions before the issuing instruction
will complete without causing an exception. This guarantees that when an excep-
tion occurs, no instructions after the interrupting one will be completed and all of
the instructions before the interrupting one can be completed. This sometimes
means stalling the CPU to maintain precise exceptions. To make this scheme
work, the floating-point functional units must determine if an exception is possi-
ble early in the EX stage (in the first 3 clock cycles in the MIPS pipeline), so as to
prevent further instructions from completing. This scheme is used in the MIPS
R2000/3000, the R4000, and the Intel Pentium. It is discussed further in
Appendix 1.

Performance of a MIPS FP Pipeline

The MIPS FP pipeline of Figure A.31 on page A-50 can generate both structural
stalls for the divide unit and stalls for RAW hazards (it also can have WAW haz-
ards, but this rarely occurs in practice). Figure A.35 shows the number of stall
cycles for each type of floating-point operation on a per-instance basis (i.e., the
first bar for each FP benchmark shows the number of FP result stalls for each FP
add, subtract, or convert). As we might expect, the stall cycles per operation track
the latency of the FP operations, varying from 46% to 59% of the latency of the
functional unit.

Figure A.36 gives the complete breakdown of integer and floating-point stalls
for five SPECfp benchmarks. There are four classes of stalls shown: FP result stalls.
FP compare stalls, load and branch delays, and floating-point structural delays. The
compiler tries to schedule both load and FP delays before it schedules branch
delays. The total number of stalls per instruction varies from 0.65 to 1.21.

Putting It All Together: The MIPS R4000 Pipeline

In this section we look at the pipeline structure and performance of the MIPS
R4000 processor family, which includes the 4400. The R4000 implements
MIPS64 but uses a deeper pipeline than that of our five-stage design both for
integer and FP programs. This deeper pipeline allows it to achieve higher clock
rates by decomposing the five-stage integer pipeline into eight stages. Because

A.6 Putting It All Together: The MIPS R4000 Pipeline A-57

Add/subtract/convert
Compares

Multiply

Divide

Divide structural

[sh B Ful |

15.4

FP SPEC
benchmarks hydro2d ‘

i 24.5

0.0 5.0 10.0 15.0 20.0 25.0
Number of stalls

Figure A.35 Stalls per FP operation for each major type of FP operation for the
SPEC89 FP benchmarks. Except for the divide structural hazards, these data do not
depend on the frequency of an operation, only on its latency and the number of cycles
before the result is used. The number of stalls from RAW hazards roughly tracks the
latency of the FP unit. For example, the average number of stalls per FP add, subtract, or
convert is 1.7 cycles, or 56% of the latency (3 cycles). Likewise, the average number of
stalls for multiplies and divides are 2.8 and 14.2, respectively, or 46% and 59% of the
corresponding latency. Structural hazards for divides are rare, since the divide fre-
quency is low.

cache access is particularly time critical, the extra pipeline stages come from
decomposing the memory access. This type of deeper pipelining is sometimes
called superpipelining.

Figure A.37 shows the eight-stage pipeline structure using an abstracted ver-
sion of the data path. Figure A.38 shows the overlap of successive instructions in
the pipeline. Notice that although the instruction and data memory occupy multi-
ple cycles, they are fully pipelined, so that a new instruction can start on every
clock. In fact, the pipeline uses the data before the cache hit detection is com-
plete; Chapter 5 discusses how this can be done in more detail.

The function of each stage is as follows:

m IF—First half of instruction fetch; PC selection actually happens here,
together with initiation of instruction cache access.

m [S—Second half of instruction fetch, complete instruction cache access.

A-58

Appendix A Pipelining: Basic and Intermediate Concepts

0.98

doduc

W FP result stalls

[~ FP compare stalls
E2 Branch/load stalls
& FP structural

0.52
ear

FP SPEC

benchmarks fydro2d

mdijdp 088

su2cor

I S SIS SO — S S VU S———

000 010 020 030 040 050 060 070 0.80 090 1.00
Number of stalis

Figure A.36 The stalls occurring for the MIPS FP pipeline for five of the SPEC89 FP
benchmarks. The total number of stalls per instruction ranges from 0.65 for su2cor to
1.21 for doduc, with an average of 0.87. FP result stalls dominate in all cases, with an
average of 0.71 stalls per instruction, or 82% of the stalled cycles. Compares generate
an average of 0.1 stalls per instruction and are the second largest source. The divide
structural hazard is only significant for doduc.

Data memory Reg

ALU

Instruction memory Reg

Figure A.37 The eight-stage pipeline structure of the R4000 uses pipelined instruc-
tion and data caches. The pipe stages are labeled and their detailed function is
described in the text. The vertical dashed lines represent the stage boundaries as well
as the location of pipeline latches. The instruction is actually available at the end of IS,
but the tag check is done in RF, while the registers are fetched. Thus, we show the
instruction memory as operating through RF.The TC stage is needed for data memory
access, since we cannot write the data into the register until we know whether the
cache access was a hit or not.

s RF_Instruction decode and register fetch, hazard checking, and also instruc-
tion cache hit detection.

m EX—Execution, which includes effective address calculation, ALU opera-
tion, and branch-target computation and condition evaluation.

s DF—Data fetch, first half of data cache access.

A.6 Putting It All Together: The MIPS R4000 Pipeline - A-59

Time (in clock cycles)

CC1 CC2 CC3 CC4 CCs CCs CcC7 cCs8 CC9 CC 10 CC 11

LD Rt Instruction memory 'ﬁ-a Data memory Reg

Instruction 1 Instruction memory 'ﬁ-a Data memory

Instruction 2 Instruction memory W Data memory .

LU

Data memory Reg

w

Figure A.38 The structure of the R4000 integer pipeline leads to a 2-cycle load delay. A 2-cycle delay is possible
because the data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the
pipeline is backed up a cycle, when the correct data are available.

Clock number

Instruction number 1 2 3 4 5 6 7 8 9
LD RI,... IF IS RF EX DF DS TC WB

DADD R2,R1,... IF IS RF stall stall EX DF DS
DSUB R3,R1,... IF IS stall stall RF EX DF
OR R4,R1,... IF stall stall IS RF EX

Figure A.39 A load instruction followed by an immediate use results in a 2-cycle stall. Normal forwarding paths
can be used after two cycles, so the DADD and DSUB get the value by forwarding after the stall. The OR instruction gets
the value from the register file. Since the two instructions after the load could be independent and hence not stall,
the bypass can be to instructions that are 3 or 4 cycles after the load.

m DS—Second half of data fetch, completion of data cache access.
» TC—Tag check, determine whether the data cache access hit.

m WB-—Write back for loads and register-register operations.

In addition to substantially increasing the amount of forwarding required, this
longer-latency pipeline increases both the load and branch delays. Figure A.38
shows that load delays are 2 cycles, since the data value is available at the end of
DS. Figure A.39 shows the shorthand pipeline schedule when a use immediately
follows a load. It shows that forwarding is required for the result of a load
instruction to a destination that is 3 or 4 cycles later.

A-60 Appendix A Pipelining: Basic and Intermediate Concepts

Time (in clock cycles)

cci1

cc2

cC3 CC4 CCs ccs cCc7 CcCs CCo cc1o CC11

Instruction 1 H Reg ’ Data memory Reg

Instruction 2

Instruction 3

Target

Data memory 41—‘— Reg

Data memory Reg

instruction memory '-s Data memory J:l

Figure A.40 The basic branch delay is 3 cycles, since the condition evaluation is performed during EX.

Figure A.40 shows that the basic branch delay is 3 cycles, since the branch
condition is computed during EX. The MIPS architecture has a single-cycle
delayed branch. The R4000 uses a predicted-not-taken strategy for the remaining
2 cycles of the branch delay. As Figure A.41 shows untaken branches are simply
l-cycle delayed branches, while taken branches have a I-cycle delay slot
followed by 2 idle cycles. The instruction set provides a branch-likely instruction,
which we described earlier and which helps in filling the branch delay slot. Pipe-
line interlocks enforce both the 2-cycle branch stall penalty on a taken branch and
any data hazard stall that arises from use of a load result.

In addition to the increase in stalls for loads and branches, the deeper pipeline
increases the number of levels of forwarding for ALU operations. In our MIPS
five-stage pipeline, forwarding between two register-register ALU instructions
could happen from the ALU/MEM or the MEM/WRB registers. In the R4000 pipe-
line, there are four possible sources for an ALU bypass: EX/DF, DF/DS, DS/T C.
and TC/WB.,

The Floating-Point Pipeline

The R4000 floating-point unit consists of three functional units: a floating-point
divider, a floating-point multiplier, and a floating-point adder. The adder logic is
used on the final step of a multiply or divide. Double-precision FP operations can
take from 2 cycles (for a negate) up to 112 cycles for a square root. In addition.
the various units have different initiation rates. The floating-point functional unit
can be thought of as having eight different stages, listed in Figure A.42; these
stages are combined in different orders to execute various FP operations.

A.6 Putting It All Together: The MIPS R4000 Pipeline

A-61

Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Stall stall stall stall stall stall stall stall

Stall stall stall stall stall stall stall

Branch target IF IS RF EX DF
Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Branch instruction + 2 IF IS RF EX DF DS TC

Branch instruction + 3 IF IS RF EX DF DS

Figure A.41 A taken branch, shown in the top portion of the figure, has a 1-cycle delay slot followed by a 2-cycie
stall, while an untaken branch, shown in the bottom portion, has simply a 1-cycle delay slot. The branch instruc-
tion can be an ordinary delayed branch or a branch-likely, which cancels the effect of the instruction in the delay slot

if the branch is untaken.

Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier
R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

Figure A.42 The eight stages used in the R4000 floating-point pipelines.

There is a single copy of each of these stages, and various instructions may
use a stage zero or more times and in different orders. Figure A.43 shows the
latency, initiation rate, and pipeline stages used by the most common double-

precision FP operations.

From the information in Figure A.43, we can determine whether a sequence
of different, independent FP operations can issue without stalling. If the timing of
the sequence is such that a conflict occurs for a shared pipeline stage, then a stall

A-62 Appendix A Pipelining: Busic and Intermediate Concepts

FP instruction Latency Initiation interval Pipe stages

Add. subtract 4 3 US+A A+R,R+S

Muttiply 8 4 UE+M-M.-M.M,N.N+A R

Divide 36 35 U.A,R, D D+A,D+R,D+A,D+R.AR
Square root 112 111 U.E, (A+R)108 A R

Negate 2 ! u.S

Absolute value 2 1 U.S

FP compare 3 2 U.A/R

Figure A.43 The latencies and initiation intervals for the FP operations both depend on the FP unit stages that a
given operation must use. The latency values assume that the destination instruction is an FP operation; the laten-
cies are 1 cycle less when the destination is a store.The pipe stages are shown in the order in which they are used for
any operation. The notation S + A indicates a clock cycle in which both the S and A stages are used.The notation D%
indicates that the D stage is used 28 times in a row.

Clock cycle

Operation lIssue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12
Multiply Issue U E+M M M M N N+A R
Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

[ssue u S+A A+R R+S

Issue U S+A A+R R+S

Figure A.44 An FP multiply issued at clock 0 is followed by a single FP add issued between clocks 1 and 7. The
second column indicates whether an instruction of the specified type stalls when it is issued n cycles later, where n is
the clock cycle number in which the U stage of the second instruction occurs. The stage or stages that cause a stall
are highlighted. Note that this table deals with only the interaction between the multiply and one add issued
between clocks 1 and 7. In this case, the add will stall if it is issued 4 or 5 cycles after the multiply; otherwise, it issues
without stalling. Notice that the add will be stalled for 2 cycles if it issues in cycle 4 since on the next clock cycle it will
still conflict with the multiply; if, however, the add issues in cycle 5, it will stall for only 1 clock cycle, since that will
eliminate the conflicts.

will be needed. Figures A.44, A.45, A.46, and A.47 show four common possible
two-instruction sequences: a multiply followed by an add, an add followed by a
multiply, a divide followed by an add, and an add followed by a divide. The fig-
ures show all the interesting starting positions for the second instruction and
whether that second instruction will issue or stall for each position. Of course,
there could be three instructions active, in which case the possibilities for stalls
are much higher and the figures more complex.

A.6 Putting It All Together: The MIPS R4000 Pipeline A-63

Clock cycle
Operation Issue/stall 0o 1 2 3 4 5 6 7 8 9 10 11 12
Add Issue U S+A A+R R+S
Multiply [ssue 8) E+M M M M N N+A R
Issue U M M M M N N+A R

Figure A.45 A multiply issuing after an add can always proceed without stalling, since the shorter instruction
clears the shared pipeline stages before the longer instruction reaches them.

Clock cycle

Operation Issue/stall 25

26 27 28 29 30 31 32 33 34 35 36

Divide Issued in D
cycle 0. . .

D D D D D+A D+R D+A D+R A R

Add Issue
Issue
Stall
Stall
Stall
Stall
Stall
Stall
Issue
Issue

Issue

U S+A A+R R+S
U S+A A+R R+S
U S+A A+R R+S
U S+A A+R R+S
8] S+A A+R R+S
U S+A A+R R+S
U S+A A+R R+S

U S+A A+R R+S

U S+A A+R

U S+A

U

Figure A.46 An FP divide can cause a stall for an add that starts near the end of the divide. The divide starts at
cycle 0 and completes at cycle 35;the last 10 cycles of the divide are shown. Since the divide makes heavy use of the
rounding hardware needed by the add, it stalls an add that starts in any of cycles 28-33. Notice the add starting in
cycle 28 will be stalled until cycle 36. If the add started right after the divide, it would not conflict, since the add could
complete before the divide needed the shared stages, just as we saw in Figure A.45 for a multiply and add. As in the
earlier figure, this example assumes exactly one add that reaches the U stage between clock cycles 26 and 35.

Performance of the R4000 Pipeline

In this section we examine the stalls that occur for the SPEC92 benchmarks when
running on the R4000 pipeline structure. There are four major causes of pipeline
stalls or losses:

1. Load stalls—Delays arising from the use of a load result 1 or 2 cycles after
the load

A-64 - Appendix A Pipelining: Basic and Intermediate Concepts

Clock cycle
Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12
Add Issue U S+A A+R R+S
Divide Stall U A R D D b D D D D D D
Issue U A R D D D D D D D D
Issue U A R D D D D D D D

Figure A.47 A double-precision add is followed by a double-precision divide. if the divide starts 1 cycle after the
add, the divide stalls, but after that there is no conflict.

B Base

1 Load stalls
8 Branch stalls
B FP result stalis

3.00 B FP structural stalls_

250

2.00 ¢+

Pipeline CPI 1.50 }

1.00 }

0.50

0.00) ‘
FEF S ISSES

SPEC92 benchmark

Figure A.48 The pipeline CPI for 10 of the SPEC92 benchmarks, assuming a perfect
cache. The pipeline CPI varies from 1.2 to 2.8. The leftmost five programs are integer
programs, and branch delays are the major CPI contributor for these. The rightmost five
programs are FP, and FP result stalls are the major contributor for these. Figure A.49
shows the numbers used to construct this plot.

2. Branch stalls—2-cycle stall on every taken branch plus unfilled or canceled
branch delay slots

FP result stalls—Stalls because of RAW hazards for an FP operand

4. FP structural stalls—Delays because of issue restrictions arising from con-
flicts for functional units in the FP pipeline

Figure A.48 shows the pipeline CPI breakdown for the R4000 pipeline for the 10

SPEC92 benchmarks. Figure A.49 shows the same data but in tabular form.
From the data in Figures A.48 and A .49, we can see the penalty of the deeper

pipelining. The R4000’s pipeline has much longer branch delays than the classic

A.7 Crosscutting Issues : A-65

Benchmark Pipeline CPI Load stalls Branchstalls FPresultstalls FP structural stalls
compress 1.20 0.14 0.06 0.00 0.00
eqntott 1.88 0.27 0.61 0.00 0.00
espresso 1.42 0.07 0.35 0.00 0.00
gee 1.56 0.13 043 0.00 0.00
i 1.64 0.18 0.46 0.00 0.00
Integer average 1.54 0.16 0.38 0.00 0.00
doduc 2.84 0.01 0.22 1.39 0.22
mdljdp2 2.66 0.01 0.31 1.20 0.15
ear 2.17 0.00 0.46 0.59 0.12
hydro2d 2.53 0.00 0.62 0.75 0.17
su2cor 2.18 0.02 0.07 0.84 0.26
FP average 2.48 0.01 0.33 0.95 0.18
Overall average 2.00 0.10 0.36 0.46 0.09

Figure A.49 The total pipeline CPl and the contributions of the four major sources of stalls are shown. The major
contributors are FP result stalls (both for branches and for FP inputs) and branch stalls, with loads and FP structural
stalls adding less.

five-stage pipeline. The longer branch delay substantially increases the cycles
spent on branches, especially for the integer programs with a higher branch fre-
quency. An interesting effect for the FP programs is that the latency of the FP
functional units leads to more result stalls than the structural hazards, which arise
both from the initiation interval limitations and from conflicts for functional units
from different FP instructions. Thus, reducing the latency of FP operations
should be the first target, rather than more pipelining or replication of the func-
tional units. Of course, reducing the latency would probably increase the struc-
tural stalls, since many potential structural stalls are hidden behind data hazards.

A.7 Crosscutting Issues

RISC Instruction Sets and Efficiency of Pipelining

We have already discussed the advantages of instruction set simplicity in building
pipelines. Simple instruction sets offer another advantage: They make it easier to
schedule code to achieve efficiency of execution in a pipeline. To see this, consider
a simple example: Suppose we need to add two values in memory and store the
result back to memory. In some sophisticated instruction sets this will take only a
single instruction; in others it will take two or three. A typical RISC architecture
would require four instructions (two loads, an add, and a store). These instructions
cannot be scheduled sequentially in most pipelines without intervening stalls.

A-66

Appendix A Pipelining: Basic and Intermediate Concepts

With a RISC instruction set, the individual operations are separate instruc-
tions and may be individually scheduled either by the compiler (using the tech-
niques we discussed earlier and more powerful techniques discussed in Chapter
2) or using dynamic hardware scheduling techniques (which we discuss next and
in further detail in Chapter 2). These efficiency advantages, coupled with the
greater ease of implementation, appear to be so significant that almost all recent
pipelined implementations of complex instruction sets actually translate their
complex instructions into simple RISC-like operations, and then schedule and
pipeline those operations. Chapter 2 shows that both the Pentium III and Pentium
4 use this approach.

Dynamically Scheduled Pipelines

Simple pipelines fetch an instruction and issue it, unless there is a data depen-
dence between an instruction already in the pipeline and the fetched instruction
that cannot be hidden with bypassing or forwarding. Forwarding logic reduces
the effective pipeline latency so that certain dependences do not result in hazards.
If there is an unavoidable hazard, then the hazard detection hardware stalls the
pipeline (starting with the instruction that uses the result). No new instructions
are fetched or issued until the dependence is cleared. To overcome these perfor-
mance losses, the compiler can attempt to schedule instructions to avoid the haz-
ard; this approach is called compiler or static scheduling.

Several early processors used another approach, called dynamic scheduling,
whereby the hardware rearranges the instruction execution to reduce the stalls.
This section offers a simpler introduction to dynamic scheduling by explaining
the scoreboarding technique of the CDC 6600. Some readers will find it easier to
read this material before plunging into the more complicated Tomasulo scheme,
which is covered in Chapter 2.

All the techniques discussed in this appendix so far use in-order instruction
issue, which means that if an instruction is stalled in the pipeline, no later instruc-
tions can proceed. With in-order issue, if two instructions have a hazard between
them, the pipeline will stall, even if there are later instructions that are indepen-
dent and would not stall.

In the MIPS pipeline developed earlier, both structural and data hazards were
checked during instruction decode (ID): When an instruction could execute prop-
erly, it was issued from ID. To allow an instruction to begin execution as soon as
its operands are available, even if a predecessor is stalled, we must separate the
issue process into two parts: checking the structural hazards and waiting for the
absence of a data hazard. We decode and issue instructions in order. However, we
want the instructions to begin execution as soon as their data operands are avail-
able. Thus, the pipeline will do out-of-order execution, which implies out-of-
order completion. To implement out-of-order execution, we must split the ID
pipe stage into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

A.7 Crosscutting Issues A-67

The IF stage proceeds the issue stage. and the EX stage follows the read oper-
ands stage. just as in the MIPS pipeline. As in the MIPS floating-point pipeline,
execution may take multiple cycles, depending on the operation. Thus. we may
need to distinguish when an instruction begins execution and when it completes
execution; between the two times. the instruction is in execution. This allows
multiple instructions to be in execution at the same time. In addition to these
changes to the pipeline structure, we will also change the functional unit design
by varying the number of units, the latency of operations. and the functional unit
pipelining, so as to better explore these more advanced pipelining techniques.

Dynamic Scheduling with a Scoreboard

In a dynamically scheduled pipeline, all instructions pass through the issue stage
in order (in-order issue): however, they can be stalled or bypass each other in the
second stage (read operands) and thus enter execution out of order. Scoreboard-
ing is a technique for allowing instructions to execute out of order when there are
sufficient resources and no data dependences; it is named after the CDC 6600
scoreboard, which developed this capability.

Before we see how scoreboarding could be used in the MIPS pipeline, it is
important to observe that WAR hazards, which did not exist in the MIPS floating-
point or integer pipelines, may arise when instructions execute out of order. For
example, consider the following code sequence:

DIV.D FO,F2,F4
ADD.D F10,F0,F8
SUB.D F8,F8,F14

There is an antidependence between the ADD. D and the SUB.D: If the pipeline exe-
cutes the SUB.D before the ADD.D, it will violate the antidependence, yielding
incorrect execution. Likewise, to avoid violating output dependences, WAW haz-
ards (e.g., as would occur if the destination of the SUB.D were F10) must also be
detected. As we will see, both these hazards are avoided in a scoreboard by stall-
ing the later instruction involved in the antidependence.

The goal of a scoreboard is to maintain an execution rate of one instruction
per clock cycle (when there are no structural hazards) by executing an instruction
as early as possible. Thus, when the next instruction to execute is stalled, other
instructions can be issued and executed if they do not depend on any active or
stalled instruction. The scoreboard takes full responsibility for instruction issue
and execution, including ali hazard detection. Taking advantage of out-of-order
execution requires multiple instructions to be in their EX stage simultaneously.
This can be achieved with multiple functional units, with pipelined functional
units, or with both. Since these two capabilities—pipelined functional units and
multiple functional units—are essentially equivalent for the purposes of pipeline
control, we will assume the processor has multiple functional units.

The CDC 6600 had 16 separate tunctional units, including 4 floating-point
units, 5 units for memory references. and 7 units for integer operations. On a

A-68

Appendix A Pipelining: Busic and Intermediate Concepts

processor for the MIPS architecture, scoreboards make sense primarily on the
floating-point unit since the latency of the other functional units is very small.
Let’s assume that there are two multipliers, one adder, one divide unit, and a sin-
gle integer unit for all memory references, branches, and integer operations.
Although this example is simpler than the CDC 6600, it is sufficiently powerful
to demonstrate the principles without having a mass of detail or needing very
long examples. Because both MIPS and the CDC 6600 are load-store architec-
tures, the techniques are nearly identical for the two processors. Figure A.50
shows what the processor looks like.

Every instruction goes through the scoreboard, where a record of the data
dependences is constructed; this step corresponds to instruction issue and replaces
part of the ID step in the MIPS pipeline. The scoreboard then determines when
the instruction can read its operands and begin execution. If the scoreboard
decides the instruction cannot execute immediately, it monitors every change in
the hardware and decides when the instruction can execute. The scoreboard also
controls when an instruction can write its result into the destination register.
Thus, all hazard detection and resolution is centralized in the scoreboard. We will

Registers Data buses

o

[

I FP divide

[FP add

1 lnteger?ﬂt i
Scoreboard e
Control/ Control/

status status

Figure A.50 The basic structure of a MIPS processor with a scoreboard. The score-
board’s function is to control instruction execution (vertical control lines). All data flows
between the register file and the functional units over the buses (the horizontal lines,
called trunks in the CDC 6600). There are two FP multipliers, an FP divider, an FP adder,
and an integer unit. One set of buses (two inputs and one output) serves a group of
functional units.The details of the scoreboard are shown in Figures A.51-A.54.

A.7 Crosscutting Issues A-69

see a picture of the scoreboard later (Figure A.51 on page A-71), but first we
need to understand the steps in the issue and execution segment of the pipeline.

Each instruction undergoes four steps in executing. (Since we are concen-

trating on the FP operations, we will not consider a step for memory access.)
Let’s first examine the steps informally and then look in detail at how the score-
board keeps the necessary information that determines when to progress from
one step to the next. The four steps, which replace the ID, EX, and WB steps in
the standard MIPS pipeline, are as follows:

1.

Issue—If a functional unit for the instruction is free and no other active
instruction has the same destination register, the scoreboard issues the
instruction to the functional unit and updates its internal data structure. This
step replaces a portion of the ID step in the MIPS pipeline. By ensuring that
no other active functional unit wants to write its result into the destination
register, we guarantee that WAW hazards cannot be present. If a structural or
WAW hazard exists, then the instruction issue stalls, and no further instruc-
tions will issue until these hazards are cleared. When the issue stage stalls, it
causes the buffer between instruction fetch and issue to fill; if the buffer is a
single entry, instruction fetch stalls immediately. If the buffer is a queue with
multiple instructions, it stalls when the queue fills.

Read operands—The scoreboard monitors the availability of the source oper-
ands. A source operand is available if no earlier issued active instruction is
going to write it. When the source operands are available, the scoreboard tells
the functional unit to proceed to read the operands from the registers and
begin execution. The scoreboard resolves RAW hazards dynamically in this
step, and instructions may be sent into execution out of order. This step,
together with issue, completes the function of the 1D step in the simple MIPS
pipeline.

Execution—The functional unit begins execution upon receiving operands.
When the result is ready, it notifies the scoreboard that it has completed
execution. This step replaces the EX step in the MIPS pipeline and takes mul-
tiple cycles in the MIPS FP pipeline.

Write result—Once the scoreboard is aware that the functional unit has com-
pleted execution, the scoreboard checks for WAR hazards and stalls the com-
pleting instruction, if necessary.

A WAR hazard exists if there is a code sequence like our earlier example
with ADD.D and SUB.D that both use F8. In that example we had the code

DIV.D FO,F2,F4
ADD.D F10,F0,F8
SuB.D F8,F8,F14

ADD.D has a source operand F8, which is the same register as the destination
of SUB.D. But ADD.D actually depends on an earlier instruction. The score-
board will still stall the SUB.D in its Write Result stage until ADD.D reads its

A-70

Appendix A Pipelining: Basic and Intermediate Concepts

operands. In general, then, a completing instruction cannot be allowed to
write its results when

a there is an instruction that has not read its operands that precedes (i.e., in
order of issue) the completing instruction, and

m one of the operands is the same register as the result of the completing in-
struction.

If this WAR hazard does not exist, or when it clears, the scoreboard tells the
functional unit to store its result to the destination register. This step
replaces the WB step in the simple MIPS pipeline.

At first glance, it might appear that the scoreboard will have difficulty sepa-
rating RAW and WAR hazards.

Because the operands for an instruction are read only when both operands are
available in the register file, this scoreboard does not take advantage of forward-
ing. Instead registers are only read when they are both available. This is not as
large a penalty as you might initially think. Unlike our simple pipeline of earlier.
instructions will write their result into the register file as soon as they complete
execution (assuming no WAR hazards), rather than wait for a statically assigned
write slot that may be several cycles away. The effect is reduced pipeline latency
and benefits of forwarding. There is still one additional cycle of latency that
arises since the write result and read operand stages cannot overlap. We would
need additional buffering to eliminate this overhead.

Based on its own data structure, the scoreboard controls the instruction pro-
gression from one step to the next by communicating with the functional units.
There is a small complication, however. There are only a limited number of
source operand buses and result buses to the register file, which represents a
structural hazard. The scoreboard must guarantee that the number of functional
units allowed to proceed into steps 2 and 4 do not exceed the number of buses
available. We will not go into further detail on this, other than to mention that the
CDC 6600 solved this problem by grouping the 16 functional units together into
four groups and supplying a set of buses, called data trunks, for each group. Only
one unit in a group could read its operands or write its result during a clock.

Now let’s look at the detailed data structure maintained by a MIPS score-
board with five functional units. Figure A.51 shows what the scoreboard’s infor-
mation looks like partway through the execution of this simple sequence of
instructions:

L.D F6,34(R2)
L.D F2,45(R3)
MUL.D FO,F2,F4
SUB.D F8,F6,F2
DIV.D F10,F0,F6

ADD.D F6,F8,F2

A.7 Crosscutting Issues A-71

Instruction status

Instruction Issue Read operands Execution complete Write result
L.D F6,34(R2) N J N N
L.D F2,45(R3) N V v
MUL.D FO,F2,F4 v
SUB.D F8,F6,F2 v
DIV.D F10,F0,F6 v
ADD.D F6,F8,F2
Functional unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 No
Multl Yes Mult FO F2 F4 Integer No Yes
Mult2 No
Add Yes Sub F8 F6 F2 Integer Yes No
Divide Yes Div F10 FO F6 Mult1 No Yes
Register result status
FO F2 F4 F6 F8 F10 F12 . F30
FU Multl Integer Add Divide

Figure A.51 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in
the instruction status table. There is one entry in the functional unit status table for each functional unit. Once an
instruction issues, the record of its operands is kept in the functional unit status table. Finally, the register result table
indicates which unit will produce each pending result; the number of entries is equal to the number of registers.The
instruction status table says that (1) the first L.D has completed and written its result, and (2) the second L.D has
completed execution but has not yet written its result. The MUL.D, SUB.D, and DIV.D have all issued but are stalled,
waiting for their operands. The functional unit status says that the first multiply unit is waiting for the integer unit,
the add unit is waiting for the integer unit, and the divide unit is waiting for the first multiply unit.The ADD. D instruc-
tion is stalled because of a structural hazard; it will clear when the SUB.D completes. If an entry in one of these score-
board tables is not being used, it is left blank. For example, the Rk field is not used on a load and the Mult2 unit is
unused, hence their fields have no meaning. Also, once an operand has been read, the Rj and Rk fields are set to No.
Figure A.54 shows why this last step is crucial.

There are three parts to the scoreboard:

1. Instruction status—Indicates which of the four steps the instruction is in.

2. Functional unit starus—Indicates the state of the functional unit (FU). There
are nine fields for each functional unit:

A-72

Appendix A Pipelining: Basic and Intermediate Concepts

s Busy—Indicates whether the unit is busy or not.

m Op—Operation to perform in the unit (e.g., add or subtract).
m Fi-—Destination register.

m Fj, Fk—Source-register numbers.

m» Qj. Qk—Functional units producing source registers Fj, Fk.

s Rj, Rk—Flags indicating when Fj, Fk are ready and not yet read. Set to No
after operands are read.

3. Register result status—Indicates which functional unit will write each register,
if an active instruction has the register as its destination. This field is set to
blank whenever there are no pending instructions that will write that register.

Now let’s look at how the code sequence begun in Figure A.51 continues exe-
cution. After that, we will be able to examine in detail the conditions that the
scoreboard uses to control execution.

Example

Answer

Assume the following EX cycle latencies (chosen to illustrate the behavior and
not representative) for the floating-point functional units: Add is 2 clock cycles,
multiply is 10 clock cycles, and divide is 40 clock cycles. Using the code seg-
ment in Figure A.51 and beginning with the point indicated by the instruction sta-
tus in Figure A.51, show what the status tables look like when MUL.D and DIV.D
are each ready to go to the Write Result state.

There are RAW data hazards from the second L.D to MUL.D, ADD.D, and SUB.D,
from MUL.D to DIV.D, and from SUB.D to ADD.D. There is a WAR data hazard
between DIV.D and ADD.D and SUB.D. Finally, there is a structural hazard on the
add functional unit for ADD.D and SUB.D. What the tables look like when MUL.D
and DIV.D are ready to write their results is shown in Figures A.52 and A.53,
respectively.

Now we can see how the scoreboard works in detail by looking at what has to
happen for the scoreboard to allow each instruction to proceed. Figure A.54
shows what the scoreboard requires for each instruction to advance and the book-
keeping action necessary when the instruction does advance. The scoreboard
records operand specifier information, such as register numbers. For example, we
must record the source registers when an instruction is issued. Because we refer
to the contents of a register as Regs[D], where D is a register name, there is no
ambiguity. For example, Fj [FU]« S1 causes the register name S1 to be placed in
F3 [FU], rather than the contents of register S1.

The costs and benefits of scoreboarding are interesting considerations. The
CDC 6600 designers measured a performance improvement of 1.7 for FOR-
TRAN programs and 2.5 for hand-coded assembly language. However, this was
measured in the days before software pipeline scheduling, semiconductor main
memory, and caches (which lower memory access time). The scoreboard on the
CDC 6600 had about as much logic as one of the functional units, which is sur-

A.7 Crosscutting Issues A-73

Instruction status

Write
Instruction Issue Read operands Execution complete result
L.D F6,34(R2) v v \l v
L.D F2,45(R3) v v v y
MUL.D FO,F2,F4 v v v
SUB.D F8,F6,F2 N v V v
DIV.D F10,F0,F6 v
ADD.D F6,F8,F2 v v v
Functional unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult] Yes Mult FO F2 F4 No No
Mult2 No
Add Yes Add F6 F8 F2 No No
Divide Yes Div F10 FO F6 Multl No Yes
Register result status
FO F2 F4 F6 F8 F10 F12 F30
FU Mult 1 Add Divide

Figure A.52 Scoreboard tables just before the MUL.D goes to write result. The DIV.D has not yet read either of its
operands, since it has a dependence on the result of the muitiply. The ADD.D has read its operands and is in execu-
tion, although it was forced to wait until the SUB. D finished to get the functional unit.ADD. D cannot proceed to write
result because of the WAR hazard on F6, which is used by the DIV.D.The Q fields are only relevant when a functional
unit is waiting for another unit.

prisingly low. The main cost was in the large number of buses—about four times
as many as would be required if the CPU only executed instructions in order (or
if it only initiated one instruction per execute cycle). The recently increasing
interest in dynamic scheduling is motivated by attempts to issue more instruc-
tions per clock (so the cost of more buses must be paid anyway) and by ideas like
speculation (explored in Section 4.7) that naturally build on dynamic scheduling.

A scoreboard uses the available ILP to minimize the number of stalls arising
from the program’s true data dependences. In eliminating stalls, a scoreboard is
limited by several factors:

A-74 Appendix A Pipelining: Basic and Intermediate Concepts

Instruction status

Write
Instruction Issue Read operands Execution complete result
L.D F6,34(R2) v v V N
L.D F2,45(R3) v J 5 N
MUL.D FO,F2,F4 v xl N V
SUB.D F8,F6,F2 v vV V \/
DIV.D F10,F0,F6 v v v
ADD.D F6,F8,F2 v V Y v
Functional unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Multl No
Mult2 No
Add No
Divide Yes Div F10 FO F6 No No
Register result status
FO F2 F4 F6 F8 F10 F12 cee F30
FU Divide

Figure A.53 Scoreboard tables just before the DIV.D goes to write result. ADD.D was able to complete as soon as
DIV.D passed through read operands and got a copy of F6.Only the DIV.D remains to finish.

The amount of parallelism available among the instructions—This deter-
mines whether independent instructions can be found to execute. If each
instruction depends on its predecessor, no dynamic scheduling scheme can
reduce stalls. If the instructions in the pipeline simultaneously must be cho-
sen from the same basic block (as was true in the 6600), this limit is likely to
be quite severe.

The number of scoreboard entries—This determines how far ahead the pipe-
line can look for independent instructions. The set of instructions examined
as candidates for potential execution is called the window. The size of the
scoreboard determines the size of the window. In this section, we assume a
window does not extend beyond a branch, so the window (and the score-
board) always contains straight-line code from a single basic block. Chapter 2
shows how the window can be extended beyond a branch.

A.8 Fallacies and Pitfalls A-75

Instruction status

Wait until Bookkeeping

Issue

Not Busy [FU] and not Result [D] Busy[FU]¢yes; Op[FU]«op; Fi[FU]«D;
Fi[FU]«S1; Fk[FU]«S2;
Qj<Result{S1]; Qke« Result[S2];
Rje not Qj; Rk« not Qk; Result[D]«FU;

Read operands

Rj and Rk Rje No; RkeNo; Qj«0; QkeO

Execution complete

Functional unit done

Write result

VA((Fjlf] # Fi[FU] ot Rj[f1=No) & Vf(if Qj[f]=FU then Rj[f]eYes);
(Fk[f] # Fi[FU] or RK[f] = No)) VF(if Qk[f]=FU then Rk[f]<VYes);
Result[Fi[FU]]« 0; Busy[FUJ« No

Figure A.54 Required checks and bookkeeping actions for each step in instruction execution.FU stands for the
functional unit used by the instruction, D is the destination register name, S1 and 52 are the source register names,
and op is the operation to be done.To access the scoreboard entry named Fj for functional unit FU we use the nota-
tion Fj{FU]. Result[D] is the name of the functional unit that will write register D.The test on the write result case pre-
vents the write when there is a WAR hazard, which exists if another instruction has this instruction’s destination
(Fi[FU]) as a source (Fj[f] or Fk[f]) and if some other instruction has written the register (Rj = Yes or Rk = Yes).The vari-
able fis used for any functional unit.

A8

Pitfall

3. The number and types of functional units—This determines the importance of
structural hazards, which can increase when dynamic scheduling is used.

4. The presence of antidependences and output dependences—These lead to
WAR and WAW stalls.

Chapters 2 and 3 focus on techniques that attack the problem of exposing and
better utilizing available ILP. The second and third factors can be attacked by
increasing the size of the scoreboard and the number of functional units; how-
ever, these changes have cost implications and may also affect cycle time. WAW
and WAR hazards become more important in dynamically scheduled processors
because the pipeline exposes more name dependences. WAW hazards also
become more important if we use dynamic scheduling with a branch-prediction
scheme that allows multiple iterations of a loop to overlap.

Fallacies and Pitfalls

Unexpected execution sequences may cause unexpected hazards.

At first glance, WAW hazards look like they should never occur in a code
sequence because no compiler would ever generate two writes to the same regis-
ter without an intervening read. But they can occur when the sequence is unex-
pected. For example, the first write might be in the delay slot of a taken branch
when the scheduler thought the branch would not be taken. Here is the code
sequence that could cause this:

A-76

Appendix A Pipelining: Basic and Intermediate Concepts

Pitfall

Pitfall

A9

BNEZ RI1,foo
DIV.D FO,F2,F4; moved into delay slot
;from fall through

foo: L.D FO,grs

If the branch is taken, then before the DIV.D can complete, the L.D will reach
WB, causing a WAW hazard. The hardware must detect this and may stall the
issue of the L.D. Another way this can happen is if the second write is in a trap
routine. This occurs when an instruction that traps and is writing results contin-
ues and completes after an instruction that writes the same register in the trap
handler. The hardware must detect and prevent this as well.

Extensive pipelining can impact other aspects of a design, leading to overall worse
cost-performance.

The best example of this phenomenon comes from two implementations of the
VAX, the 8600 and the 8700. When the 8600 was initially delivered, it had a
cycle time of 80 ns. Subsequently, a redesigned version, called the 8650, with s
55 ns clock was introduced. The 8700 has a much simpler pipeline that operates
at the microinstruction level, yielding a smaller CPU with a faster clock cycle of
45 ns. The overall outcome is that the 8650 has a CPI advantage of about 20%.
but the 8700 has a clock rate that is about 20% faster. Thus, the 8700 achieves the
same performance with much less hardware.

Evaluating dynamic or static scheduling on the basis of unoptimized code.

Unoptimized code—containing redundant loads, stores, and other operations that
might be eliminated by an optimizer—is much easier to schedule than “tight”
optimized code. This holds for scheduling both control delays (with delayed
branches) and delays arising from RAW hazards. In gce running on an R3000,
which has a pipeline almost identical to that of Section A.1, the frequency of idle
clock cycles increases by 18% from the unoptimized and scheduled code to the
optimized and scheduled code. Of course, the optimized program is much faster,
since it has fewer instructions. To fairly evaluate a compile time scheduler or run
time dynamic scheduling, you must use optimized code, since in the real system
you will derive good performance from other optimizations in addition to sched-
uling.

Concluding Remarks

At the beginning of the 1980s, pipelining was a technique reserved primarily for
supercomputers and large multimillion dollar mainframes. By the mid-1980s. the
first pipelined microprocessors appeared and helped transform the world of com-
puting, allowing microprocessors to bypass minicomputers in performance and
eventually to take on and outperform mainframes. By the early 1990s, high-end

A.10

A.10 Historical Perspective and References A-77

embedded microprocessors embraced pipelining, and desktops were headed
toward the use of the sophisticated dynamically scheduled, multiple-issue
approaches discussed in Chapter 2. The material in this appendix, which was
considered reasonably advanced for graduate students when this text first
appeared in 1990. is now considered busic undergraduate material and can be
found in processors costing less than $10!

Historical Perspective and References

Section K.4 on the companion CD features a discussion on the development of
pipelining and instruction-level parallelism. We provide numerous references for
further reading and exploration of these topics.

B.1
B.2
B.3
B.4
B.S
B.6
B.7
B.8
B9
B.10
B.11
B.12

Introduction

Classifying Instruction Set Architectures
Memory Addressing

Type and Size of Operands

Operations in the Instruction Set
Instructions for Contro! Flow

Encoding an Instruction Set

Crosscutting Issues: The Role of Compilers
Putting It All Together:The MIPS Architecture
Fallacies and Pitfalls

Concluding Remarks

Historical Perspective and References

B-2

B-3

B-7
B-13
B-14
B-16
B-21
B-24
B-32
B-39
B-45
B-47

